数据资产的价值体现及影响因素

发表时间:2019-06-26 19:18

数据资产的应用场景极其丰富,并仍在不断扩大。在金融领域,德勤和中科院联合开发的智能化产品“智慧债券”,其主要采用云、大数据和人工智能技术,基于基本面分析和舆情分析,实现了债券的信用风险实时预警;在公共事业领域,浙江省开展“公共数据资源梳理”项目,它包括企事业单位、政府单位,依托电子政务项目预审的工作,开展全省项目独立预审单位的信息系统实有数据普查等,借助数据系统更高效地处理政务工作。


数据的应用场景


内部使用 —— 业务数据化


内部使用主要指将企业运营产生的数据进行收集整理分析,用于服务自身经营决策、业务流程,从而提升公司盈利能力。


电商平台在运营中会产生大量的平台交易数据,平台可以通过对现有交易数据的分析来制定下一步的运营和营销策略。各电信运营商都有成熟的高价值客户关怀维护体系,会定期分析高价值用户的套餐状态、消费情况、使用异常等,从而可以适时地采取客情维系策略,如在用户套餐即将到期时,通过一定的续约优惠(续约送手机、充值返话费等)吸引用户续约,延长稳定收益的时间。


外部商业化 —— 数据业务化


外部商业化是指将数据整理分析后形成可以对外服务的数据商品,如芝麻信用和品牌数据银行等。


芝麻信用是一家旨在构建简单、平等、普惠商业环境的信用科技企业,是蚂蚁金服生态体系的重要组成部分。芝麻信用利用云计算、机器学习等领先科技客观呈现个人和企业的商业信用状况。芝麻信用从用户信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度对用户的信用进行评估。目前已在租赁、购物、商旅出行、本地生活等众多商业场景中通过信用科技赋能,让商户为更多用户提供更好更便利的服务。人与人,人与商业之间的关系正因为信用而变得简单。比如,当用户的芝麻分达到一定数值,租车、住酒店时可以不用再交押金;有一定芝麻分的个人办理签证时可以等同于存款证明等等。目前芝麻信用已经在超过 40 个行业提供商业信用服务,免押金额超过 1000 亿元,服务过亿用户数。


除上述两款产品外,阿里巴巴旗下还有 “数据银行”等,也是使用数据进行外部商业化的实例。2017 年,阿里巴巴发布了服务于品牌的消费者数据资产管理中心——品牌数据银行(Brand Databank)。品牌数据银行的含义,就是将品牌消费者数据视为资产,像货币一样进行储蓄和增值。品牌商由此可以直观地看到相应的消费者资产,并用于帮助其营销决策。消费者资产的形成,与品牌在三个维度上的表现相关:消费者总量;消费者品类购买力;消费者转化力。它可以基于品牌消费者人数,预测该人群将为品牌带来的商业价值(按 GMV 维度)。


通过数据的全链路透视,消费者数据资产由此终于变得可评估、可优化、可运营,这在根本上改变了对营销效果的评估方式:消费者资产由一次次营销和运营活动逐渐积累和沉淀而来,它以资产为主线,将多个单次活动串联起来,从而能够支撑企业长期的营销规划和决策。例如,戴森Dyson 借助阿里巴巴 Uni Marketing,准确地找到了潜在的消费者,并能够开展长期运营:所有与戴森有过联系的消费者,都沉淀在了它的品牌数据银行中,并以 AIPL(认知、兴趣、购买、忠诚)的不同阶段进行了区分。正是基于对“品牌与消费者关系不断加深”的这一清晰分析,戴森可以有效地判断和规划某类营销活动中相关产品组合的有效程度。


影响数据资产价值的因素


影响数据资产价值的因素主要从数据资产的收益和风险两个维度考虑,数据资产的收益取决于数据资产的质量和数据资产的应用价值。数据资产的质量是应用价值的基础,对数据的质量水平有一个合理的评估,有利于对于数据的应用价值进行准确预测。



质量维度


数据资产质量价值的影响因素包含真实性、完整性、准确性、数据成本、安全性等。


真实性,表示数据的真实程度。如果数据有偏差,那么使用结果可能会差之毫厘失之千里;若数据造假,更将失去数据统计的意义。真实的数据才具有价值。


• 完整性,表示数据对被记录对象的所有相关指标的完整程度。关键数据的缺失,将影响数据在应用中的价值贡献,或需增加成本去补充数据。数据的采集范围越广,完整性可能越高,数据资产的价值相对也会越大。


• 准确性,表示数据被记录的准确程度。在工作中,拿到的数据都需要先进行清洗工作,排除异常值、空白值、无效值、重复值等,这项工作很可能会占到整个数据分析过程将近一半的时间。专职工种“数据清理工程师”的出现也说明数据清洗工作的复杂性。数据的准确性越高,对数据的清理成本越低,数据的价值也就越大。


• 数据成本,在数据交易市场不活跃的情况下,数据的价值没有一个明确的计算方式,卖方出售数据的报价首先会考虑数据的成本。数据的获取方式通常为公司内部收集或者外购。对于公司内部产生和收集数据,显性成本主要有收集、持有程序下的人力成本、存储设备成本等,无法可靠计量的隐形成本主要为数据所附着业务的研发成本、人力成本摊销等。通常,获取成本越大,数据的交易价值相对越大。


• 安全性,表示数据不被窃取或破坏的能力。数据自身的安全性越高,就可以为企业产生越稳定的价值贡献;同时,数据持有企业对其支付的保护成本越低,其数据资产的价值越大。




应用维度数据资产应用价值的影响因素包含稀缺性、时效性、多维性、场景经济性(李然辉,2018)。稀缺性,表示数据资产拥有者对数据的独占程度。


商业竞争的本质,部分来自于对于稀缺资源的竞争。在制造差异化趋平的情况下,稀缺数据资源背后潜在的商业信息更加凸显价值。比如司机驾驶习惯的数据,如:驾驶速度的稳定系数、刹车油门踩动的频繁程度等——保险公司拿到这些数据,有助于它分析出司机的驾驶习惯、事故风险概率,从而相对精准地计算车险保费金额,更有效地提高经营效率(东方财富网, 2018)。然而,这类数据是稀缺的,一般只有汽车生产商或出行服务运营商可以获得这类数据。相对于司机的姓名、联系方式等普通信息,驾驶习惯数据由于其稀缺性而体现出更高的价值。


• 时效性,数据的时效性决定了决策在特定时间内是否有效。比如交通信息数据,在没有智能交管之前,交管中心收集的交通数据通常比较滞后,司机收到的路况信息已经是几十分钟之前的,低时效导致数据的价值大打折扣。在有了智能交管之后,信息中心通过获取智能手机、车辆的实时位置,可以实时提供地区的人流量和车流量情况,提前分散车流、缓解交通压力。由此可见,数据的时效性在某些应用场景下至关重要(bingdata123, 2018)。


• 多维性,表示数据覆盖范围的多样性。比如用户在搜索引擎提问“美妆”、“学区查询”、“金融招聘”等问题,搜索引擎可以根据这些问题及打开的相关链接,分析出用户的年龄段、性别、文化背景、职业大类、需求偏好,再根据使用的手机或电脑品牌,更换通信设备的频率等推测出收入阶层,将这些数据挖掘整理后连接起来,就刻画出一个多维的用户形象。数据维度越多,适用的范围越广,数据的价值也就越大。


• 场景经济性,数据的价值在于与应用场景的结合,不同应用场景下,数据所贡献的经济价值有所不同。比如我们上述提到的,司机驾驶习惯数据可以帮助保险公司更准确地计算保费和理赔概率以提高利润,该数据也可以帮助交通公司招聘合适的司机,但招聘场景下的应用价值,可能没有帮助保险公司提高利润所带来的价值更大;又如交通路况信息用于物流公司的场景,比个人出行场景下的经济价值更大;再如,当多维度的用户信息用于寻找高净值客户时,也比用于普通生活用品推广场景下的经济价值更大。




风险维度数据资产的风险主要源自于所在商业环境的法律限制和道德约束,其对数据资产的价值有着从量变到质变的影响,在数据资产估值中应予以充分考虑。


• 法律限制,在法律尚未明确规定的情况下,哪些数据绝对不能交易,哪些数据可以通过设计合法后才能交易,这些问题在限制数据交易的同时也影响着数据资产的价值。例如,经去标识化处理后的个人信息虽然可以相对自由地进行交易,但其价值与去标识前的个人信息显然存在差异。从实际效果来看,对于数据交易的限制性规定越多,交易双方的合规成本和安全成本自然也会相应提升,虽然作为附带效果,数据合规和数据安全产业会因此得到发展空间,但却可能从整体上对数据资产市场的发展造成重大影响,进而影响到数字经济的整体发展,应以发展和包容的理念去平衡考虑数据的价值创造与风险控制。一部关于数据交易的法律法规的出台或者一个经典判决的作出,都可能对相应数据资产的价值带来从量变到质变的影响。




道德约束,是指来自社会舆论压力的风险等。获取个人隐私信息的公司如不恰当地使用个人信息,不尊重用户隐私,将会影响公司的品牌形象、客户信任,对于数据资产的价值和公司的价值都会带来负面影响。